System Analysis and Design

API Design

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By: Vahid Rahimian

—
=
—

Spring 2021

ity

Agenda

*HTTP, REST Basics

*REST API Design Guide

*SOAP, REST, GraphQL, and gRPC
*Which APl Format?

By Vahid Rahimian

(%)
S
(]
2
c
D
G
=
M
<
v
—
N
(@)
N
(e70]
C
=
o
(Vp]
c
20
(%]
(V)
()]
©
C

System Analysis a

—
N
—/

uelwiyey piyep Ag

AlisiaAIUN J1eys ‘Teoz Sulads ‘ugisaq pue sisAjeuy waisAs

%
=
%
O
an
e
99
[1]
ad
P’
=
-
an

Hypertext Transfer Protocol
(HTTP)

* A communications protocol

* Allows retrieving inter-linked text documents
(hypertext)

 World Wide Web.

By Vahid Rahimian

* HTTP Verbs

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

e HEAD GET /index.html HTTP/1.1
. GET Host: myket.ir R
° POST Browser | Web Server
. PUT « /
° HTTP/1.1 200 OK
DELETE Content-Type: text/html
* TRACE
* OPTIONS <html><head>... [i J
* CONNECT

Representational State Transfer (REST)

A style of software architecture for distributed
hypermedia systems such as the World Wide
Web.

By Vahid Rahimian

Introduced in the doctoral dissertation of Roy
Fielding
* One of the principal authors of the HTTP specification.

System Analysis and Design, Spring 2021, Sharif University

A collection of network architecture principles
which outline how resources are defined and
addressed

REST and HTTP

* The motivation for REST was to capture the
characteristics of the Web which made the Web
successful.

* URI Addressable resources
* HTTP Protocol
* Make a Request — Receive Response — Display Response

By Vahid Rahimian

* Exploits the use of the HTTP protocol beyond HTTP
POST and HTTP GET

* HTTP PUT, HTTP DELETE

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(@)}
—/

REST - not a Standard

* REST is not a standard

* JSR 311: JAX-RS: The Java™ API for RESTful Web
Services

* But it uses several standards:
* HTTP
* URL
 XML/HTML/GIF/JPEG/etc (Resource Representations)

* text/xml, text/html, image/gif, image/jpeg, etc
(Resource Types, MIME Types)

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
~N
—/

Main Concepts

Nouns (Resources)
unconstrained
l.e., http://example.com/employees/12345

By Vahid Rahimian

>
=
(%]
S
(]
2
c
D
G
=
©
=
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
C\
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp]

Verbs Representations
constrained constrained
l.e., GET l.e., XML

—
(0.0]
—/

Resources

* The key abstraction of information in REST is a
resource.

* A resource is a conceptual mapping to a set of entities

* Any information that can be named can be a resource: a
document or image, a temporal service (e.g. "today's
weather in Los Angeles"), a collection of other resources, a
non-virtual object (e.g. a person), and so on

By Vahid Rahimian

* Represented with a global identifier (URIin HTTP)
* http://myket.ir/games/clash-of-clans

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(o}
—/

http://myket.ir/games/clash-of-clans

Naming Resources

* REST uses URI to identify resources

e https://myket.ir/games/
* https://myket.ir/games/clash-of-clans/
e https://myket.ir/gsames/clash-of-clans/comments/

By Vahid Rahimian

e http://sharif.edu/classes
e http://sharif.edu/classes/cs40418-2
e http://sharif.edu/classes/cs40418-2/students

>
=
(%]
S
(]
2
c
D
G
=
©
<
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
c
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp)

* As you traverse the path from more generic to more
specific, you are navigating the data

—
=
o

—

https:///
http://taaghche.com/books
http://localhost/books/
https:///
http://taaghche.com/books
http://localhost/books/
https:///
http://taaghche.com/books
http://localhost/books/
http://sharif.edu/classes
http://sharif.edu/classes/cs40418-2
http://sharif.edu/classes/cs2650/students
http://sharif.edu/classes/cs40418-2
http://sharif.edu/classes/cs2650/students

Verbs

* Represent the actions to be performed on resources

HTTP GET
HTTP POST
HTTP PUT
HTTP DELETE

o
By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
[HEY
[HY

—

HTTP GET

* How clients ask for the information they seek.

Issuing a GET request transfers the data from the
server to the client in some representation

By Vahid Rahimian

GET http://taaghche.com/books
* Retrieve all books

GET http://taaghche.com /books/ISBN-0011021
* Retrieve book identified with ISBN-0011021

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

GET http://taaghche.com/books/ISBN-0011021/authors
* Retrieve authors for book identified with ISBN-0011021

—
=
N

—

http://taaghche.com/books
http://localhost/books/ISBN-0011021
http://taaghche.com/books
http://localhost/books/ISBN-0011021
http://localhost/books/ISBN-0011021/authors
http://taaghche.com/books
http://localhost/books/ISBN-0011021/authors

HTTP PUT, HTTP POST

HTTP POST creates a resource

HTTP PUT updates a resource

POST http://admin.taaghche.com/books/

* Content: {title, authors|], ...}
e Creates a new book with given properties

PUT http://taaghche.com/books/isbn-111

* Content: {isbn, title, authors]], ...}

* Updates book identified by isbn-111 with submitted properties

—

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

=
(98]

|

http://admin.taaghche.com/books/
http://taaghche.com/books/isbn-111

HTTP DELETE

* Removes the resource identified by the URI

e DELETE http://admin.taaghche.com/books/ISBN-0011
* Delete book identified by ISBN-0011

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
[N
D

—

http://admin.taaghche.com/books/ISBN-0011

Representations

* How data is represented or returned to the client for
presentation.

* Two main formats:

By Vahid Rahimian

* JavaScript Object Notation (JSON)

* XML

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

* It is common to have multiple representations of the
same data

—
=
(9

—

Representations

>
5
=
C
)
=
&
* XML =
N
R &
<COURSE> 2L
<ID> CS40418-2 </ID> o 2
<NAME> System Analysis and Design </NAME> QC; E
= (©
<INSTRUCTOR> Vahid Rahimian </INSTRUCTOR> i<
</COURSE> T -
(0]
8
2
* JSON E
<
z
{ g
“id”: “CS40418-2", @

“name”: “System Analysis and Design”,
“instructor”: “Vahid Rahimian”

6]

Representational State Transfer

Client

http://myket.ir/games/clash-of-clans

> Resource

A

\,‘\/_/

Description
Screenshots, Video

User Comments

Clash-of-Clans.html

The Client references a Web resource using a URL. A representation of the resource is returned (in
this case as an HTML document).

The representation (e.g., Clash-Of-Clans.html) places the client application in a state. The result of the
client traversing a hyperlink in Clash-Of-Clans.html is another resource accessed. The new
representation places the client application into yet another state. Thus, the client application changes
(transfers) state with each resource representation --> Representation State Transfer!

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

 \
=
~

—

Architecture Style

Request
(XML doc)

HTTP GET

Response
(XML doc)

URL1

Request
(XML doc)

HTTP POST

HTTP Response

Response

v

URL1 |[—

(JSON doc)

PO
(XML doc)

HTTP Response

Response
(TEXT doc)

HTTP DELETE

URL1 |—

HTTP Response

Web/Proxy Server

A 4

A

A

A

REST Engine

(locate resource
and generate

response)

— doGet()

— doPost(id)

—»doDelete()

—

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

=
(0¢]

|

Real Life Examples

* Google Maps

* Google AJAX Search API

By Vahid Rahimian

* Amazon Web Services

* Trello API

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
=
O

—

REST and the Web

The Web is an example of a REST system!

All of those Web services that you have been using all
these many years - book ordering services, search
services, online dictionary services, etc - are REST-
based Web services.

By Vahid Rahimian

Alas, you have been using REST, building REST services
and you didn't even know it.

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

ity

By Vahid Rahimian

REST API Design
Guide

+—
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=

Syste

—
N
=

—

Organize the API around resources

* Focus on the business entities that the
web APl exposes. For example, in an
e-commerce system, the primagl
entities might be customers an
orders.

» Avoid requiring resource URIls more
complex |
than collection/item/collection.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
2
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

(]
HTTP ™ Copy

https://adventure-works.com/orders // Good

—
N
N

—/

https://adventure-works.com/create-order // Avoid

Define operations in terms of
HTTP methods

GET retrieves a representation of the
resource at the specified URI. The body
of the response message contains the
details of the requested resource.

POST creates a new resource at the
specified URI. The body of the request
message provides the details of the new
resource. Note that POST can also be
used to trigger operations that don't
actually create resources.

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

Define operations in terms of
HTTP methods

PUT either creates or replaces the
resource at the specified URI. The body
of the request message specifies the
resource to be created or updated.

PATCH performs a partial update of a
resource. The request body specifies the
set of changes to apply to the resource.

DELETE removes the resource at the
specified URI.

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

Define operations in terms of
HTTP methods

Resource

/customers

/customers/1

/customers/1/orders

POST

Create a new
customer

Error

Create a new
order for
customer 1

GET

Retrieve all
customers

Retrieve the
details for
customer 1

Retrieve all
orders for
customer 1

PUT

Bulk update of
customers

Update the details
of customer 1 if it
exists

Bulk update of
orders for customer
1

DELETE

Remove all
customers

Remove
customer 1

Remove all
orders for
customer 1

—

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

N
(92}

|

Conform to HTTP semantics:
Media Types

* In the HTTP protocol, formats are specified
through the use of media types, also called
MIME types.

By Vahid Rahimian

* For non-binary data, most web APIs support
JSON (media type = application/ﬂ'son) and
possibly XML (media type = application/xml).

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

* The Content-Type header in a request or
response specifies the format of the
representation.

—
N
(@)}

—/

Conform to HTTP semantics:
Media Types

HTTP ™ Copy

POST https://adventure-works.com/orders HTTP/1.1
Content-Type: application/json; charset=utf-8
Content-Length: 57

{"Id":1,"Name":"Gizmo","Category”:"Widgets", "Price™”:1.99}

By Vahid Rahimian

If the server doesn't support the media type, it
should return HTTP status code 415
(Unsupported Media Type).

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
N
~N

—/

Conform to HTTP semantics:
Media Types

HTTP ™ Copy

GET https://adventure-works.com/orders/2 HTTP/1.1
Accept: application/json

By Vahid Rahimian

* A client rec1.uest can include an Accept header that
contains a list of media types the client will accept from
the server in the response message.

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

* If the server cannot match any of the media type(s) listed,
it should return HTTP status code 406 (Not Acceptable).

—
N
(0.0]

—/

Conform to HTTP semantics:
POST methods

If a POST method creates a new resource, it returns HTTP status
code 201 (Created). The URI of the new resource is included in the
Location header of the response. The response body contains a
representation of the resource.

If the method does some processing but does not create a new
resource, the method can return HTTP status code 200 and include
the result of the operation in the response body. Alternatively, if
there is no result to return, the method can return HTTP status code
204 (No Content) with no response body.

By Vahid Rahimian

If the client puts invalid data into the request, the server should
return HTTP status code 400 (Bad Request). The response body can
contain additional information about the error or a link to a URI that
provides more details.

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

Conform to HTTP semantics:
PATCH methods

* With a PATCH request, the client sends a set of

=
.g
. . S e
updates to an existing resource, in the form of a =
patch document. The server processes the patch 53
document to perform the update. o §
S z
Error condition HTTP status code o
2
The patch document format isn't supported. 415 (Unsupported Té’
. <<
Media Type) =
Malformed patch document. 400 (Bad Request) :%
The patch document is valid, but the changes can't be applied to the resource 409 (Conflict)

(0]

in its current state.

Conform to HTTP semantics:

Async operations

Sometimes a POST, PUT, PATCH, or DELETE
operation might require processing that
takes a while to complete.

If you wait for completion before sending a
response to the client, it may cause
unacceptable latency.

If so, consider making t

async
(Acce
accep
comp

nronous. Return H

ne operation
TTP status code 202

oted) to indicate t

eted

ne request was

ted for processing but is not

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

By Vahid Rahimian

Filter and paginate data

* GET requests over collection resources can
potentially return a large number of items.

* You should design a web API to limit the
amount of data returned by any single
request.

 Consider supporting query strings that
specify the maximum number of items to
retrieve and a starting offset into the
collection.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
2
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

w
N

HTTP ™ Copy

/orders?limit=25&offset=50

Support partial responses for
large binary resources

A resource may contain large binary fields, such
as files or images.

To overcome problems caused by unreliable and
intermittent connections and to improve
response times, consider enabling such
resources to be retrieved in chunks.

To do this, the web APl should support the
Accept-Ranges header for GET requests for large
resources.

This header indicates that the GET operation
supports partial requests. The client application
can submit GET requests that return a subset of
a resource, specified as a range of bytes.

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

Support partial responses for
large binary resources

HTTP ™ Copy

GET https://adventure-works.com/products/16?fields=productImage HTTP/1.1
Range: bytes=0-2499

By Vahid Rahimian

HTTP ™ Copy

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes
Content-Type: image/jpeg
Content-Length: 2500
Content-Range: bytes 0-2499/4586

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
2
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
w
N

-

Support partial responses for

large binary resources
Also, consider implementing HTTP HEAD

req

A H
req
HT
wit
A C
req

uests for these resources.

EAD request is similar to a GET

uest, except that it only returns the

P headers that describe the resource,
N an empty message body.

ient application can issue a HEAD
uest to determine whether to fetch a

resource by using partial GET requests.

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

By Vahid Rahimian

Support partial responses for
large binary resources

HTTP ™ Copy

HEAD https://adventure-works.com/products/10?tields=productImage HTTP/1.1

By Vahid Rahimian

HTTP ™ Copy

HTTP/1.1 200 OK

Accept-Ranges: bytes
Content-Type: image/Jjpeg
Content-Length: 4580

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
2
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
w
(@)}

—/

ty

Iversi

Use HATEOAS to enable
navigation to related resources

(=

(.

| -

©

L=

JSON M Copy)
-

{ i
"orderID":3, N c
"productID":2, O ©
"quantity”:4, o2
"orderValue":16.60, (e]0] E
"links":[e o=

{ = ds
"rel":"customer", o g
"href":"https://adventure-works.com/customers/3", (Vp)
"action":"GET", e}
"types":["text/xml","application/json" (= =

. yp [PP 3 1 o0 '(-CU

{ 2] >
"rel":"customer", ()
"href":"https://adventure-works.com/customers/3", D 5"
"action™:"PUT", N o)
"types":["application/x-www-form-urlencoded"] (-

o O

{ n
"rel":"customer", (7)
"href":"https://adventure-works.com/customers/3", >
"action™:"DELETE", TU
"types":[] c

1,

{ <
"rel”:"self", E
"href":"https://adventure-works.com/orders/3", Q
"action":"GET", =
"types":["text/xml","application/json"] U>')~

Lo N

{

"rel":"self",
"href":"https://adventure-works.com/orders/3",

"action™:"PUT",

“types":["application/x-www-form-urlencoded"]

w
~N

"rel":"self",
"href":"https://adventure-works.com/orders/3",
"action™:"DELETE",
“types”:[]

i3l

Versioning a RESTful web API

HTTP ™ Copy

HTTP/1.1 260 OK
Content-Type: application/json; charset=utf-8

"id":3,"name":"Contoso LLC","address":"1l Microsoft Way Redmond WA 98053"}

By Vahid Rahimian

If the Datecreated field is added to the schema of the customer resource, then the response would

look like this:

HTTP ™ Copy

HTTP/1.1 208 OK
Content-Type: application/json; charset=utf-8

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

"id":3,"name":"Contoso LLC","dateCreated":"2014-09-04T12:11:38.03760897", "address™:"1 Mic

—
w
(0.0]

—/

>

Versioning a RESTful web API

* URI Versioning
https://adventure-works.com/v2/customers/3

By Vahid Rahimian

* Query string versioning
https://adventure-works.com/customers/3?version=2

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

* Header versioning

HTTP ™ Copy

w
(o}

GET https://adventure-works.com/customers/3 HTTP/1.1
Custom-Header: api-version=2

Versioning a RESTful web API

* Media type versioning

HTTP ™ Copy

GET https://adventure-works.com/customers/3 HTTP/1.1
Accept: application/vnd.adventure-works.vl+json

By Vahid Rahimian

HTTP ™ Copy

HTTP/1.1 200 OK
Content-Type: application/vnd.adventure-works.vl+json; charset=utf-8

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

"id":3,"name":"Contoso LLC","address":"1l Microsoft Way Redmond WA 98053"}

—
S
(@)

-

ity

By Vahid Rahimian

SOAP, REST,
GraphQL, and gRPC

+—
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=

Syste

—
I
[N

—

SOAP

Simple Object Access Protocol (SOAP)

A protocol for exchanging information
encoded in Extensible Markup
Language (XML) between a client and
a procedure or service that resides on
the Internet

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

SOAP

SOAP is typically used with the Web
Service Description Language (WSDL).

By Vahid Rahimian

WSDL describes how to structure the
SOAP request and response messages

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

Sample WSDL

<definitions name = "HelloService"
targetNamespace = "http://www.examples.com/wsdl/HelloService.wsdl"
xmlns = "http://schemas.xmlsoap.org/wsdl/"
xmlns:soap = "http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns = "http://www.examples.com/wsdl/HelloService.wsdl"
xmlns:xsd = "http://www.w3.0rg/2001/XMLSchema” >

<message hame
<part name
</message>

"SayHelloRequest">
"firstName" type = "xsd:string"/>

1
By Vahid Rahimian

<message name
<part name
</message>

"SayHelloResponse">
"greeting" type = "xsd:string"/>

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

<portType name = "Hello PortType">

<operation name = "sayHello">
<input message = "tns:SayHelloRequest"/> [44_J
<output message = "tns:SayHelloResponse"/>

</operation>

</portType>

Sample WSDL (cont'd)

<binding name = "Hello Binding" type = "tns:Hello PortType">
<soap:binding style = "rpc”
transport = "http://schemas.xmlsoap.org/soap/http"/>
<operation name = "sayHello">
<soap:operation soapAction = "sayHello"/>
<input>
<soap:body
encodingStyle = "http://schemas.xmlsoap.org/soap/encoding/
namespace = "urn:examples:helloservice"
use = "encoded"/>

</input>

<output>
<soap:body

encodingStyle = "http://schemas.xmlsoap.org/soap/encoding/
namespace = "urn:examples:helloservice”
use = "encoded"/>

</output>

</operation>
</binding>

—

S
Ul

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

|

Sample WSDL (cont’d)

<service name = "Hello_Service">
<documentation>WSDL File for HelloService</documentation> IS
<port binding = "tns:Hello Binding" name = "Hello_Port"> ;E
<soap:address %
location = "http://www.examples.com/SayHello/" /> =
</port> f;
</service> =

</definitions>

System Analysis and Design, Spring 2021, Sharif University

(4]

Sample SOAP Request

POST /Quotation HTTP/1.0

Host: www.Xxyz.org

Content-Type: text/xml; charset = utf-8
Content-Length: nnn

<?xml version = "1.0"?>

<SOAP-ENV:Envelope
Xxmlns:SOAP-ENV = "http://www.w3.0rg/2001/12/soap-envelope”
SOAP-ENV:encodingStyle = "http://www.w3.0rg/2001/12/soap-encoding”>

By Vahid Rahimian

<SOAP-ENV:Body xmlns:m = "http://www.xyz.org/quotations”>
<m:GetQuotation>
<m:QuotationsName>MiscroSoft</m:QuotationsName>
</m:GetQuotation>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
.20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
S
~N

-

Sample SOAP Response

HTTP/1.0 200 OK
Content-Type: text/xml; charset = utf-8
Content-Length: nnn

<?xml version = "1.0"?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV = "http://www.w3.0rg/2001/12/soap-envelope”
SOAP-ENV:encodingStyle = "http://www.w3.0rg/2001/12/soap-encoding">

By Vahid Rahimian

<SOAP-ENV:Body xmlns:m = "http://www.xyz.org/quotation”>
<m:GetQuotationResponse>
<m:Quotation>Here is the quotation</m:Quotation>
</m:GetQuotationResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
.20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
S
[o%)

-

REST

Representational State Transfer

An architectural style devised by Roy
Fielding in his 2000 Ph.D. thesis.

Use the standard HTTP methods, GET,
POST, PUT and DELETE, to query and
mutate resources represented by URIs
on the Internet.

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

REST

>
5=
(%)
S
(]
2
[
D
G
=
©
<
V)
H\
o
<<resource>> o <
animal N0
: a0 £
name: string £
— | -
legs: number o g
age: number <<enum>> m\ re)
— — canFly: boolean season uco c
. . - o — (O
/api/animals —— summer O >
- HTTP » /api/flowers ————— , ~ autumn o =
/api/cars <<resource>> . a
GET ‘ flower winter 'g
Client POST . ’ spring ©
PUT name: string D
DELETE — . n
bloomsln_. season <<enum>> >
color: string level ©
waterNeeds: level g
| J low
medium =
high g
<<resource>>
A

car

——| make: string
model: string
year: number

\ J

U
(@)

HATEOAS

Hypermedia as the Engine of
Application State

a REST response can contain links that
describe operations or followup
workflow steps relevant to the given
resource.

By Vahid Rahimian

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

REST can use HATEOAS

Concept
* REST uses HATEOAS to define

=
s
2
[
S
=
(@p)
—
S 5
(o]0]
operations and workflow tasks that e
wn o
EL®)
are relevant to a resource =
O >
>
: s
—_ ;
"vin": "KNDJT2A23A7703818", 2
"make": "kia", g
"model": "soul", g
"year": 2010, 9
"links": { 2
" ice": "/cars/KNDJT2A23A7703818/service",
"sell": "/cars/KNDJT2A23A7703818/sell"
"clean": "/cars/KNDJT2A23A7703818/sell" [52]
}
}

}

Sample REST Request

GET/ HTTP/1.1
Host: https://api.github.com/

By Vahid Rahimian

accept: text/html,image/webp,image/png
accept-encoding: gzip, deflate, br
accept-language: en-US,en;q=0.9,fa;g=0.8

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

cache-control: no-cache

Sample REST Response

"current_user_url": "https://api.github.com/user",

"current_user_authorizations_html_url"”: "https://github.com/settings/connections/applications{/client_id}",
"authorizations_url": "https://api.github.com/authorizations”,

"code_search_url": "https://api.github.com/search/code?q={query}{&page,per_page,sort,order}",
"commit_search_url": "https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}”,
"emails_url": "https://api.github.com/user/emails”,

"emojis_url": "https://api.github.com/emojis”,

"events_url": "https://api.github.com/events”,

"feeds_url": "https://api.github.com/feeds",

"followers_url": "https://api.github.com/user/followers",

"following _url": "https://api.github.com/user/following{/target}"”,

"gists_url": "https://api.github.com/gists{/gist_id}",

"hub_url": "https://api.github.com/hub"”,

"issue_search_url”: "https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}”,
"issues_url": "https://api.github.com/issues™”,

"keys_url": "https://api.github.com/user/keys",

"label_search_url”: "https://api.github.com/search/labels?q={query}&repository_id={repository_id}{&page,per_page}",
"notifications_url": "https://api.github.com/notifications”,

"organization_url®: "https://api.github.com/orgs/{org}",

"organization_repositories_url": "https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}”,
"organization_teams_url": "https://api.github.com/orgs/{org}/teams”,

"public_gists_url": "https://api.github.com/gists/public”,

"rate_limit_url": "https://api.github.com/rate_limit",

"repository_url": "https://api.github.com/repos/{owner}/{repo}",

"repository_search_url": "https://api.github.com/search/repositories?g={query}{&page,per_page,sort,order}”,
"current_user_repositories_url": "https://api.github.com/user/repos{?type,page,per_page,sort}”,
"starred_url": "https://api.github.com/user/starred{/owner}{/repo}",

"starred_gists_url": "https://api.github.com/gists/starred”,

"user_url": "https://api.github.com/users/{user}",

"user_organizations_url": "https://api.github.com/user/orgs",

"user_repositories_url": "https://api.github.com/users/{user}/repos{?type,page,per_page,sort}”,

By Vahid Rahimian

>
=
(%]
S
(]
2
c
D
G
=
©
<
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
c
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp)

Ul
S

"user_search_url": "https://api.github.com/search/users?g={query}{&page,per_page,sort,order}"”

GraphQL

GraphQLl is a technology that came
out of Facebook but is now open-
source specification.

By Vahid Rahimian

The underlying mechanism for
executing queries and mutations is

the HTTP POST verb.

GraphQL requests can be sent via
HTTP POST or HTTP GET requests.

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

GraphQL

as the name implies, GraphQL is
intended to represent data in a graph.

Instead of the columns and rows
found in a relational database or the
collection of structured documents
found in a document-centric database
such as MongoDB, a graph database is
a collection of nodes and edges.

By Vahid Rahimian

System Analysis and Design, Spring 2021, Sharif University

GraphQL Query

* Unlike REST, in which the caller
has no control over the structure of
the returned dataset (maybe just
fields’), GraphQL allows you to
define the structure of the returned
data explicitly in the query itself.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(92}
~N

—/

GraphQL Query

query result
{ {
venues{ "data": {
name "venues": [
city {
state_province "name": "Capitol Theater",
} "city": "West Mallie",|
} "state_province": "New Hampshire"
}
{
"name": "Floydmouth Arena",
"city": "Port Floydmouth",
"state_province": "Alabama"
}
{
"name": "Symphony Hall",
"city": "Blockborough",
"state_province": "Alaska"
}
]
}
}

—

>
=
(%]
S
(]
2
c
D
G
=
©
<
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
c
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp)

By Vahid Rahimian

19
(o0}

|

GraphQL Query

>
4
fz
)
2
c
D
=
| -
©
<
n
query result =~
S
{ { o £
venues{ "data": { £ =
| -
name "venues": [a ©
(Vp]
postal_code { =T
} "name": "Capitol Theater", o <
} "postal_code": "33865" O >
}, () 5
. =
"name": "Floydmouth Arena", ©
"postal_code": "©5642-4932" 2
}s =
{ c
"name": "Symphony Hall", <
"postal code": "45651-1205" =
} %
>
)

]
}

}

[0

GraphQL Request

* POST requests sent with the Content-
Type header application/graphqgl must
have a POST body content as a
GraphQL query string.

By Vahid Rahimian

query {
getTask(id: "ox3") {
id
title
completed

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
2
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

eeeeeeee

—
(o))
o

—/

GraphQL Request

* POST requests sent with the Content-
Type header application/json must
have a POST body in the following
JSON format:

By Vahid Rahimian

{

Ilquer.yll: L]

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

"operationName”: "
"variables": { "var™: "val", ... }

}

 \
(0))]
=

—

GraphQL Request

*In GET requests, the query, variables,
and operation are sent as URL-
encoded query parameters in the
URL.

By Vahid Rahimian

http://localhost:8080/graphgl?query={...}&variables={... }&operation=...

>
=
(%]
S
(]
2
c
D
G
=
©
<
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
c
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp)

—
(o))}
N

—/

GraphQL Response

*The “data” field contains the result of
vour GraphQL request.

* The “extensions” field contains extra
metadata for the request with metrics
and trace information for the request.

*The “errors” field is a JSON list where
each entry has a "message" field that
describes the error.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(o))}
w

—/

ey
Sample GraphQL Response
2
{ N
"data": { Eog
"getTask"™: { §§
"id": "ex3", EDEU
"title": "GraphQL docs example”, gg
"completed": true, =
"user": { _ﬁ
"username”: "dgraphlabs", g
"name": "Dgraph Labs" =
}
}
}

o)

}

Sample GraphQL Response

{
"data": {
"getTask": {
I!id!f: |!®x3ll’

. (=
"title": “GraphQL docs example”, ©
"completed": true, e
"user": { <

"username": "dgraphlabs", 52

"name": "Dgraph Labs" o)
} =

©

} >
>

¥ oM

"extensions": {

"touched_uids": 9,

"tracing": {
"version": 1,
"startTime": "2020-07-29T@5:54:27.784837196Z",
"endTime": "2020-07-29T05:54:27.787239465Z2",
"duration": 2482299,
"execution": {

System Analysis and Design, Spring 2021, Sharif University

"resolvers": [
{
"pa.th": [
"getTask"
1,
"parentType": "Query",
"fieldName": "getTask",

(5]

Sample GraphQL Response (contd)

"parentType": "Query",

"label™: "query",
"startoffset": 171684,
"duration": 2154290

C

"fieldName": "getTask", =
"returnType": "Task", E
"startoffset": 122073, ©
" - n m
duration": 2255955, -
"dgraph": [c
©

{ >

>

(aa)]

System Analysis and Design, Spring 2021, Sharif University

(o6

Sample GraphQL Response

c
®
n ", .g
errors": [=
{ ©
o
"message": "Field \"getTask\" argument \"id\" of type \"ID!\" is required but not provided.", -
"locations™: [<
©
{ >
"line": 2, 5
"column™: 3
}
]
}

System Analysis and Design, Spring 2021, Sharif University

7]

GraphQL Subscriptions

Opens the door to asynchronous
messaging.

Query and mutation data exchange under
GraphQLl is synchronous due to the

request-response pattern inherent in the
HTTP/1.1 protocol.

However, GraphQL allows users to
receive messages asynchronously when a
specific event is raised on the server-side

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

GraphQL Subscriptions

84_

Message

Subscription uses messaging
protocol such as AMPQ

Client

GraphQL
Subscription
Server

[USes

A

event raised

HTTP POST—p»

GraphQL
Server

uses

GraphQL Type System

—

>
=
(%]
S
(]
2
c
D
G
=
©
<
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
c
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp)

By Vahid Rahimian

(@)
(o)

|

gRPC

A data exchange technology developed
by Google and then later made open-
source.

By Vahid Rahimian

Like GraphQL, it's a specification that's
implemented in a variety of languages.

Unlike REST and GraphQL, which use
text-based data formats, gRPC uses

binary format (Increases performance)

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

gRPC Protocol Bufters

gRPC uses the Protocol Buffers binary
format.

Both the client and server in a gRPC data
exchange shall have access to the same
schema definition

By convention, a Protocol Buffers definition
is defined in a .proto file.

The .proto file provides the "dictionary" by
which data is encoded and decoded to and
from the Protocol Buffers binary format.

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

uelwiyey piyea Ag

AlisiaAIUN J1eys ‘Teoz Sulads ‘ugisaq pue sisAjeuy waisAs

gRPC
Server

proto file
HTTP/2

gRPC

oRPC and HTTP/2

In addition to using Protocol Buffers
to encode data and thus increase
performance, gRPC has another
benefit.

It supports bidirectional,
asynchronous data exchange. This is
because gRPC is based on the HTTP/2

protocol.

System Analysis and Design, Spring 2021, Sharif University
By Vahid Rahimian

HTTP/2

Unlike HTTP/1.1, which supports only a
request-response interaction over a single
connection, HTTP/2 supports any number
of requests and responses over a single
connection.

Connections can also be bidirectional.

under HTTP/2, a client opens a
connection to a target server, and that
connection stays open until either the
client or server closes it.

gRPC allows data streams as well. The
steam can emanate from the client or
from the server.

By Vahid Rahimian

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

gRPC schema in protocol buffer
language format

1 //defines an Animal response

2 message AnimalResponse {

3 Animal animal = 1;

4 }

5

6 //defines cars returned as a single array

7 message CarResponse {

8 repeated Car car = 1;

9 }

10

11

12 service SimpleService {

13 rpc GetAnimals () returns (stream AnimalResponse) {
14 }

15

16 rpc GetFlowers () returns (stream FlowerResponse) {
17 }

18

19 rpc GetCars (SearchCarRequest) returns (CarResponse) {
20 }

21 |}

—

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
(o]0]
C
o
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

~
(9

|

gRPC workflow

gRPC Workflow

gRPC Server

By Vahid Rahimian

ProtoBuf protoc
Definitions Compiler

o Define e Compile ‘
gRPC Client

>
=
(%)
S
(]
2
c
)
(.
'z
©
=
(9p]
H\
AN
o
(@]
(e70]
C
'z
o
(Vp]
c
20
(%)
()
o
©
C
©
.V)
>
=
(¢°)
C
<<
protoc --go_out=plugins=grpc £
=
(%)
>
(Vp)

Generate Code 0 Implement

—
~N
(@)}

—/

Sample ProtoBuff Message

message Testl {
optional int32 a = 1;

}

* In an application, you create a Testl message
and set a to 150. You then serialize the message
to an output stream. If you were able to examine
the encoded message, you'd see three bytes:

08 96 01

—

~
~

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

|

Sample ProtoBuff Message

message Test4 {
repeated int32 d = 4 [packed=true];

}

* Now let's say you construct a Test4, providing
the values 3, 270, and 86942 for the repeated
field d. Then, the encoded form would be:

22

06

03

8E 02

OE A7 035

//
//
//
//
//

key (field number 4, wire type 2)
payload size (6 bytes)

first element (varint 3)

second element (varint 276)

third element (varint 86942)

—

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

By Vahid Rahimian

~
(o0}

|

Sample gRPC Request

M grpc_person_search_protobuf with_image.pcapng — [l X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am:® RE Q&a=2E73 ¢ = QQQT
=
(M http2 XIEE: ©
Ho. Tine Source Destinatic DstPor Protoce Lengt Info =
4 B.811122 127.8.8.1 127.8.8.1 58851 HTTP2 114 Magic, SETTINGS[@], WINDOW_UPDATE[@] =
6 @.6876488 127.8.8.1 127.8.6.1 51835 HTTP2 84 SETTINGS[@], WINDOW UPDATE[@] ég
3 8.838541 127.8.8.1 127.8.6.1 58851 HTTP2 53 SETTINGS[@] -
18 é.es31821 127.8.8.1 127.6.8.1 51@35 HTTP2 53 SETTINGS[@] c—
12 9.1086617 127.0.6.1 127.6.6.1 58851 GRPC 198 HEADERS[3]: POST /tutorial.PersonSearchService/Search, DATA[3] i%
14 @.148395 127.8.8.1 127.6.8.1 51@35 HTTP2 111 HEADERS[3]: 208 OK :>
16 @.145838 127.e.8.1 127.6.8.1 51@35> GRPC 124 DATA[3] (GRPC) (PROTOBUF) tutorial.Person >
18 @.644830 127.6.0.1 127.0.6.1 51835 GRPC 237 DATA[3] (GRPC) (PROTOBUF) tutorial.Person (PNG) ()]
28 1.157e7e 127.e.8.1 127.8.8.1 51835 HTTP2 78 HEADERS[3]
22 1.163528 127.8.8.1 127.8.8.1 58851 HTTP2 61 GoAWAY[@]
< >
[Header Length: 245] s

[Header Count: 3]

Header: :authority: localhost:58@51

Header: :path: /tutorial.PersonSearchService/Search
Header: :method: POST

Header: :scheme: http

Header: content-type: application/grpc

Header: te: trailers

System Analysis and Design, Spring 2021, Sharif University

Header: user-agent: grpc-java-netty/1.3.8
883

Header: grpc-accept-encoding: gzip i
aa

Stream: DATA, Stream ID: 3, Length 18
% GRPC Message: /tutorial.PersonSearchService/Search, Request
Compressed Flag: Not Compressed (@)
Message Length: 13
Message Data: 13 bytes
% Protocol Buffers: /tutorial.PersonSearchService/Search,request (Message: tutorial.PersonSearchRequest) _fli
4

79

name: Jason

name: Lily i

O ¥ CQRPC Messaze (zrpc), 18 byvtes FPackets: 27 - Displayed: 10 (37.0%) || Profile: Default

Sample gRPC Response

A grpc_person_search_protobuf with_image.pcapng — O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

>
r
wn
S
()
2
c
)
G
=
©
<
v
AW ® RO Qes=Eg s==aqaqan =
[‘lhtth [3 '] + g %
No. Time Source Destination DstPort Protocol Length Info (e]0] E
4 9.011122 127.9.0.1 127.8.8.1 50051 HTTP2 114 Magic, SETTINGS[@], WINDOW_UPDATE[®] g e
6 0.976400 127.9.0.1 127.0.0.1 51035 HTTP2 84 SETTINGS[@], WINDOW_UPDATE[®] o g
8 0.080541 127.6.6.1 127.0.0.1 50051 HTTP2 53 SETTINGS[@] U1 o)
16 6.081021 127.6.6.1 127.@.0.1 51035 HTTP2 53 SETTINGS[@] DCD _E
12 0.106617 127.9.0.1 127.0.0.1 50051 GRPC 190 HEADERS[3]: POST /tutorial.PersonSearchService/Search, DATA[3] D g
14 ©.14@395 127.6.6.1 127.0.0.1 51035 HTTP2 111 HEADERS[3]: 200 0K 8 -
16 ©6.145080 127.6.6.1 127.0.0.1 51835 GRPC 124 DATA[3] (GRPC) (PROTOBUF) tutorial.Person - ()]
18 ©.644030 127.90.0.1 127.0.0.1 51035 GRPC 237 DATA[3] (GRPC) (PROTOBUF) tutorial.Person (PNG) c
20 1.157676 127.6.6.1 127.0.0.1 51035 HTTP2 78 HEADERS[3] ©
22 1.163528 127.6.6.1 127.0.0.1 58051 HTTP2 61 GOAWAY[@] g
< > =
©
HyperText Transfer Protocol 2 ~ C
GRPC Message: /tutorial.PersonSearchService/Search, Response 0039 <
v Protocol Buffers: /tutorial.PersonSearchService/Search,response (Message: tutorial.Person) gg:g g
r?ame: Lily 2060 "J;
id: 1ee2 0070 U>)~
email: Lily@example.com 0080
phone: (12 bytes) (Message: tutorial.Person.PhoneNumber) 0099
v phone: (15 bytes) (Message: tutorial.Person.PhoneNumber) ©0a0
number: 18822228888 eobe
type: WORK (2) 2222 80
v portrait_image: (119 bytes) 00e0
Portable Network Graphics v
< > < >

O ¢ GRPC Message (grpc), 184 bytes Packets: 27 - Displaved: 10 (37.0%) Profile: Default

API Communication

a REST client written in Go can
communicate with a REST server
written in Node.JS. Or, you can
execute a query or mutation from the
curl command.

By Vahid Rahimian

Same goes for GraphQL, gRPC, and
SOAP

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

—
uelwiyey piyep Ag
AlisiaAIUN J1eys ‘Teoz Sulads ‘ugisaq pue sisAjeuy waisAs

(o)
(o 0]
—

Which API Format?

SOAP: Pros

SOAP can be implemented using a variety
of protocols, not only HTTP but SMTP
and FTP as well.

SOAP supports discovery via WSDL and
it's language agnostic.

SOAP has been around for a while. There
is still a good deal of legacy SOAP
implementations that need to be
maintained.

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

SOAP: Cons

SOAP can be considered a complex message
format with a lot of ins and outs to the
specification.

The verbose nature of XML which is the format
upon which SOAP is based, coupled with the
reliance on external namespaces to extend the
basic message format makes the protocol
difficult to manage.

SOAP messages can get quite large.

Moving bulky, text based, SOAP messages
between source and target takes a long time in
comparison to binary messaging protocols such
as gRPC

By Vahid Rahimian

>
r
(%]
o
()
2
C
)
Y
e
M
i
v
—
N
(@)
N
Q0
C
o
o
(0p)
c
.20
(%)
(V)
()]
©
C
(0]
D
(%]
=
(¢°)
C
<
=
Q
o+
(%]
>
(Yp)

SOAP: Cons

* SOAP Is a legacy protocol. While
there’'s a lot of maintenance work
to be done with those systems that
use it, new architectures are taking
a more modern approach to inter-
service communication.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(0]
(92}

—/

REST: Pros

- REST Is simple, well-known, and
widely used.

* You make a call on a resource
represented by a URL on the Internet
using an HTTP verb and get a
response back in JSON or XML.

* Productivity under REST Is almost
Immediate.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(0,0]
(@)}

—/

REST: Cons

* REST I1s iImmutable in terms of the data
structure of a response.

* Glven the response/response aspect of
HTTP/1.1, REST can be slow.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(0.0]
~N

—/

GraphQL: Pros

GraphQL Is flexible and growing In
popularity.

The latest version of GitHub's APl Is
published using GraphQL. Yelp

publishes its API in GraphQL, as does
Shopify. The list continues to grow.

The GraphQL specification covers every
aspect of APl implementation, from
Scalars, Types, Interfaces, Unions,
Directives, ...

By Vahid Rahimian

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

GraphQL: Cons

» QraphQL is complex and hard to
Implement. While the specification
allows for customization, the basic
framework cannot be avoided. You
have to do things according to the
GraphQL way.

* REST, on the other hand, has a limited
rule set to follow.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(00]
(o}

—/

GraphQL vs REST

It's the difference between making a
skateboard and making an automobille.
No matter what, you need four wheels as
well as a way to start and stop, but a
skateboard (REST) Is far easier to make
and operate than an automobile
(GraphQL).

It's a question of tradeoffs and making
sure the benefits of use outweigh the cost
of Implementation.

Once GraphQL is implemented, users
find it a better developer experience than

By Vahid Rahimian

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

gRPC: Pros

* gRPC Is exact and wicked fast.

* |It's become a de facto standard for
Inter-service data exchange on the
backend.

» Bidirectional streaming capabilities that
are provided by HTTP/2 allow gRPC to
be used In situations where REST or
GraphQL can't even be considered.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

 \
(o)
=

—

gRPC: Cons

Both client and server need to support the
same Protocol Buffers specification. This
IS a significant undertaking in terms of
version control.

Under REST or GraphQL, one can add a
new attribute(s) to a resource (REST) or
type (GraphQL) without running much risk
of breaking the existing code. Making
such additions in gRPC can have a
detrimental impact. Thus, updates to the
.proto file need to be carefully
coordinated.

By Vahid Rahimian

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

gRPC: Cons

» Another challenge is that HTTP/2 does
not have universal support for public-
facing client-server interactions on the
Internet.

* Not all websites on the Internet support
HTTP/2.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
o}
(O8]

—/

gRPC: Cons

gRPC is that it takes time to attain

mastery.

Some time can be saved by using the
protoc tool. protoc will auto-generate
gRPC client and server code according

to a particular programming
pased on a specific .proto fi

t's useful for creating boiler

requires a lot more work.

language
e.

nlate code,

put doing more complex programming

>
r
(%]
S
()
2
c
)
G
e
M
<
v
—
N
(@)
N
Q0
C
o
o
(Vp]
c
.20
(%]
(V)
()]
©
C
(0]
D
%]
=
(¢°)
C
<
=
Q
+—
(%]
>
(Yp)

By Vahid Rahimian

gRPC as a Backend Technology

* gRPC Is best suited to situations where
developers control both client and
server data exchange activities.
Typically such boundaries exist on the
backend. Hence, the prominence of
gRPC as a backend technology.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
H\
(@
(@)
(@
Q0
C
=
o
(Vp]
c
20
(%)
(V)
(@)
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
e}
(92}

—/

gRPC: Performance over Flexibility

* gRPC Is a very particular API format
that provides lightning-fast execution at
the expense of flexibility.

* Yet, If you have an application in which
nanoseconds count, gRPC includes
speed that Is hard to match when using
REST or GraphQL.

By Vahid Rahimian

>
r
(%]
S
()
2
c
D
G
=
©
<
v
—
N
(@)
N
Q0
C
=
o
(Vp]
c
20
(%)
(V)
()]
©
C
©
D
(%)
=
©
C
<
=
Q
+—
(%)
>
(Yp)

—
(o}
(@)}

—/

By Vahid Rahimian

Any Questions?

Your time is limited, don’t waste it living someone else’s life

>
=
(%]
S
(]
2
c
D
G
=
©
<
(9p]
H\
(@
o
(@
(o]0]
C
o
o
(Vp]
c
20
(%]
(V)
(@)
©
C
©
D
(%)
=
©
C
<<
=
Q
+—
(%)
>
(Vp)

Steve Jobs, Stanford University speech, 2005

—
(o}
~N

—/

